Mixed barrier model for the mixed glass former effect in ion conducting glasses.
نویسندگان
چکیده
Mixing two types of glass formers in ion conducting glasses can be exploited to lower conductivity activation energy and thereby increasing the ionic conductivity, a phenomenon known as the mixed glass former effect (MGFE). We develop a model for this MGFE, where activation barriers for individual ion jumps get lowered in inhomogeneous environments containing both types of network forming units. Fits of the model to experimental data allow one to estimate the strength of the barrier reduction, and they indicate a spatial clustering of the two types of network formers. The model predicts a time-temperature superposition of conductivity spectra onto a common master curve independent of the mixing ratio.
منابع مشابه
IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
A nonlinear and nonadditive composition-dependent change of the ionic conductivity in mixed glass-former (MGF) glasses when one glass former, such as PS(5/2), is replaced by a second glass former, such as GeS2, at constant alkali modifier concentrations, such as Na2S, is known as the mixed glass-former effect (MGFE). Alkali ion conducting glasses are of particular interest for use as solid elec...
متن کاملShort range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.
The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g...
متن کاملElectrical conductivity anomaly in silver vadadium-tellurite glasses at temperatures higher than a characteristic temperature: evidence for an ionic-nonadiabatic polaronic mixed conduction
Electrical conduction anomaly was observed in the mixed ion-polaron regime for xAg2O-40TeO2-(60-x)V2O5 glassy system with 0 ≤x≤ 50 mol%, which were prepared by common melt quenching method. For the understudied glasses, the temperature dependence of dc electrical conductivity was measured from a characteristic temperature to 380 K, which certified their semiconducting nature. The measured condu...
متن کاملNMR and conductivity studies of the mixed glass former effect in lithium borophosphate glasses.
Alkali ion charge transport has been studied in a series of mixed glass former lithium borophosphate glasses of composition 0.33Li(2)O + 0.67[xB(2)O(3) + (1 - x)P(2)O(5)]. The entire concentration range, 0.0 ≤ x ≤ 1.0, from pure glassy Li(2)P(4)O(11) to pure glassy Li(2)B(4)O(7) has been examined while keeping the molar fraction of Li(2)O constant. Electrical conductivity measurements and nucle...
متن کاملIonic Conductivity of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 â•fi x)P2O5] Glasses
The mixed glass former effect (MGFE) is defined as a nonlinear and nonadditive change in the ionic conductivity with changing glass former fraction at constant modifier composition between two binary glass forming compositions. In this study, mixed glass former (MGF) sodium borophosphate glasses, 0.35Na2O + 0.65[xB2O3 + (1 – x)P2O5], 0 ≤ x ≤ 1, have been prepared, and their sodium ionic conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 14 شماره
صفحات -
تاریخ انتشار 2009